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Preface

Math you can run. That’s the spirit of this book: every definition, claim, or diagram can be
checked with a few lines of readable Python. When ideas and numbers agree, intuition sticks.

Why this book and why now?
Practical ML and modern Al rest on a small core: linear algebra for shapes and projections;
calculus for sensitivities; probability for uncertainty; optimization for learning; and a disciplined
way to make claims falsifiable. Python lowers the activation energy. NumPy arrays make algebra
concrete; Matplotlib turns signal into sight; tiny experiments make mistakes visible and progress
tangible.

How to use this book
Follow the “Math +» Code” loop: learn the concept, run the smallest check you can write, and
read the result. Repeat until it feels obvious. Keep runs reproducible: set seeds, print shapes and
scalars, and save figures with captions that say what to observe. Treat exercises as experiments.
They do not test memory — they teach reflexes: framing, checking, and communicating results.

What’s inside
Parts I-III build the language: vectors and matrices as actions; derivatives as local models;
landscapes and the chain rule as engines for learning. Parts IV-V make uncertainty and op-
timization usable: distributions you’ll see often; calibration that makes probabilities honest;
convexity and constraints that keep solutions meaningful; stochastic methods that scale. Parts
VI-VII bridge to practice: end-to-end modeling; attention and embeddings; autodiff and Py-
Torch; small patterns that carry into transformers and LLMs.

If at any point you feel stuck, shrink the problem. Smaller shapes, fixed seeds, and one
printed number will get you moving again. Keep your curiosity, and let the code keep you
honest.

Technical & Legal Note

This book and its code are provided for educational purposes only. Examples are simpli-
fied and may omit edge cases; verify results and assumptions for your context, especially
in safety-, medical-, or financial-critical settings. The author and publisher provide the
material “as is” without warranties and are not liable for losses arising from use; external
dependencies and links can change over time.
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