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Preface

What This Book Is
This book is a focused, modern mathematics backbone for machine learning, deep learning,
and large language models. It collects exactly the results that practitioners reach for when
they design models, read papers, and reason about training dynamics and generalization—no
broader and no narrower. The aim is fluency: turning definitions into usable tools and theorems
into everyday instincts.

Approach & Objects
We build from first principles and keep the line of sight to applications clear.

• Foundations: sets, logic, functions, inequalities.

• Linear Algebra & Matrices: vector spaces, eigen/SVD, projections; the workbench for
representations and optimization.

• Analysis & Calculus: continuity/differentiability in Rd, Taylor models, integration.

• Convex Analysis & Optimization: geometry of sets/functions, first/second order,
constraints, and stochastic variants.

• Probability & Random Matrices: concentration, tail bounds, random features/spec-
tra.

• Information, Transforms, Kernels, OT: information theory, Fourier/functional tools,
RKHS, and transport.

• Numerical Analysis: floating–point, conditioning, iterative linear algebra, and opti-
mization stability.

Throughout, statements are minimal but sharp; proofs highlight the one or two key moves
(compactness, orthogonality, convexity, or a concentration inequality). Boxes labeled At a
Glance summarize takeaways; examples and exercises focus on what you will actually do.

Why It Matters for ML/DL/LLMs
Modern ML systems are mathematical artifacts. Training stability, generalization, prompt
sensitivity, and scaling behavior all rest on a small set of ideas:

• Representation & Geometry (linear algebra, manifolds) shape expressivity and induc-
tive bias.

• Optimization (convex tools, nonconvex heuristics) governs convergence, step selection,
and robustness.
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• Uncertainty (measure, concentration, random matrices) explains regularization, averag-
ing, and spectral effects.

• Information & Transforms connect compression, attention, kernels, and frequency–
domain reasoning.

• Numerics ensures the math survives floating–point, finite precision, and iterative solvers.

LLMs amplify these needs: spectra and conditioning affect transformer stability; concentration
and random matrix theory underlie initialization and scaling; convex analysis informs proximal
and preconditioning ideas used inside nonconvex training; and transport distances support
alignment and evaluation.

What You Are Holding
This sample includes the full Preface and Chapter 1. The chapter sets notation and core tools
we use repeatedly across the book. The complete work adds the remaining chapters, part
introductions, reference appendices, and a visual companion, all with the same styling and
structure you see here.

How to Read
Skim the At a Glance callouts first, then read until an example feels routine. Treat exercises as
a checklist of skills: if you can do them cleanly, you own the topic. When in doubt, draw the
geometry, check the inequality’s equality cases, and write down the exact assumptions used by
a theorem.



Part I

Foundations



Why Formalism Pays Off

Modern ML/DL systems run on numbers, but succeed because of structure. The foundations
in this part turn vague intuitions (“this should converge”, “that should be small”) into tools
you can apply on day one of an ML project. Sets and logic fix the language; real analysis
supplies limits, compactness and completeness; inequalities give you a Swiss‑army knife for
bounding losses, gradients, and errors. Together they let you reason about training dynamics,
generalization, stability, and the tradeoffs that appear everywhere from optimization schedules
to normalization layers.

Two recurring patterns appear throughout the Primer and in real systems:

• Translate an engineering question into a mathematical object (a set, a function, a sequence,
an operator), then

• Control it with a bound (via an inequality), a limit (via completeness), or a decomposition
(via later parts).

You will see these patterns again in optimization (smoothness bounds, Lipschitz constants),
in probability (concentration and expectations), and in matrix analysis (spectral, operator‑norm
reasoning). This part is the on‑ramp.

At a Glance

• Ch. 1 — Sets, Logic, Functions — the language of precise ML claims (assump-
tions, equivalences, images/preimages) and the habits behind correct proofs and
careful API thinking.

• Ch. 2 — Real Numbers, Sequences, Series — limits, completeness, com-
pactness; the substrate for convergence arguments, existence of minimizers, and
continuity of training maps.

• Ch. 3 — Inequalities Toolkit — AM–GM/CS/Hölder/Minkowski/Jensen as
everyday instruments to bound losses, gradients, and residuals; knowing when each
tool bites.
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1 Sets, Logic, and Functions

Motivation
Sets, logic, relations, and functions are the language of all later chapters. Clear, standard
definitions and a few core proof patterns prevent subtle mistakes in linear algebra, analysis,
probability, and optimization. This chapter fixes notation, reviews basic logic, formalizes func-
tions and relations, and establishes the completeness property of R via suprema and infima.

At a Glance

• Set Algebra & Logic — operations, quantifiers, De Morgan; the grammar for
proofs, events in probability, and feasible sets in optimization.

• Functions — image/preimage; injective/surjective/bijective; inverses; track con-
straints under maps, define random variables, and reason about invertibility.

• Relations — equivalence, partitions, partial orders; build quotients in algebra/ge-
ometry and model order structures (cones, lattices).

• Cardinality — countable vs. uncountable; diagonal arguments; CSB (statement);
construct enumerations, use separability, and know limits of countable methods.

• Bounds & Completeness — sup / inf and the least upper bound axiom; justify
convergence arguments and existence of extrema on compact sets.

• Proof Patterns — direct, contrapositive, contradiction, induction; reusable tem-
plates powering later theorems across the Primer.

1.1 Sets and Basic Logic
This section establishes the common language for reasoning throughout the Primer. Set op-
erations and basic logic govern the algebra of events in probability, domains and ranges in
functions, and feasible regions in optimization. Mastery here reduces later cognitive load when
the same patterns appear inside linear algebra, measure theory, and topology.

Definition 1.1 (Set operations). Given sets A,B, define union A ∪ B, intersection A ∩ B,
difference A \ B, complement Ac (relative to an ambient universe U), and Cartesian product
A×B = {(a, b) : a ∈ A, b ∈ B}. Standard conventions follow [2].

Definition 1.2 (Quantifiers and implications). Statements use ∀ (“for all”) and ∃ (“there
exists”). The implication P ⇒ Q is logically equivalent to ¬P ∨Q and contraposition ¬Q ⇒ ¬P .

Theorem 1.3 (De Morgan’s laws). For subsets of a fixed universe U ,

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.
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CHAPTER 1. SETS, LOGIC, AND FUNCTIONS 4

Proof. We show (A ∪B)c = Ac ∩Bc. For any x ∈ U , x ∈ (A ∪B)c iff x /∈ A ∪B iff (x /∈ A and
x /∈ B) iff x ∈ Ac ∩Bc. The other identity is analogous.

Proof patterns to practice

• Direct proof: manipulate definitions and known results to reach the claim.

• Contrapositive: prove ¬Q ⇒ ¬P instead of P ⇒ Q.

• Contradiction: assume the claim false and derive an impossibility.

• Induction: establish a base case and an inductive step (weak/strong).

1.2 Functions: Image, Preimage, and Invertibility
Functions formalize mappings between sets and are the backbone of analysis, optimization, and
probability (random variables are functions; optimization minimizes functions). Images and
preimages are indispensable for translating constraints and for measuring sets under transfor-
mations, later used in integration and measure theory.

Definition 1.4 (Function, injective/surjective/bijective). Let f : X → Y be a rule assigning
each x ∈ X a unique f(x) ∈ Y . f is injective if f(x) = f(x′) ⇒ x = x′, surjective if im f :=
f(X) = Y , and bijective if both injective and surjective (then f has an inverse f−1 : Y → X).

Definition 1.5 (Image and preimage). For S ⊆ X and T ⊆ Y , define the image f(S) = {f(x) :
x ∈ S} and the preimage f−1(T ) = {x ∈ X : f(x) ∈ T}.

Proposition 1.6 (Image/preimage algebra). For any A,B ⊆ X and C,D ⊆ Y :

1. f(A ∪B) = f(A) ∪ f(B) and f(A ∩B) ⊆ f(A) ∩ f(B) with equality if f is injective.

2. f−1(C ∪D) = f−1(C) ∪ f−1(D) and f−1(C ∩D) = f−1(C) ∩ f−1(D).

3. f−1(Y \ C) = X \ f−1(C).

Proof. (a) If y ∈ f(A∪B) then y = f(x) for some x ∈ A∪B, hence y ∈ f(A)∪f(B). Conversely,
f(A)∪ f(B) ⊆ f(A∪B) is immediate. For intersections, if x ∈ A∩B then f(x) ∈ f(A)∩ f(B),
so f(A ∩ B) ⊆ f(A) ∩ f(B). If f is injective and y ∈ f(A) ∩ f(B) then y = f(a) = f(b) with
a ∈ A, b ∈ B; injectivity gives a = b ∈ A ∩B, hence y ∈ f(A ∩B). (b)–(c) follow directly from
elementwise logic.

Proposition 1.7 (Left/right cancellability). Let f : X → Y .

1. f is injective iff for all sets A,B ⊆ X, f(A) = f(B) implies A = B.

2. f is surjective iff for every T ⊆ Y , f(f−1(T )) = T .

Proof. (a) If f is injective and f(A) = f(B), then for any x ∈ A we have f(x) ∈ f(B), so
x ∈ B by injectivity applied to a preimage witness; hence A ⊆ B and symmetrically B ⊆ A.
Conversely, if f is not injective, some x 6= x′ satisfy f(x) = f(x′); taking A = {x} and B = {x′}
yields f(A) = f(B) while A 6= B. (b) If f is onto, every y ∈ T has x ∈ X with f(x) = y, so
y ∈ f(f−1(T )). The reverse inclusion always holds. If f is not onto, let T = Y \ im f ; then
f(f−1(T )) = ∅ 6= T .

Example 1.8 (Simple numerical intuition). Let f : Z → N be f(n) = |n|. Then f is not injective
because f(1) = f(−1), and not surjective because 0 ∈ N has no preimage if N = {1, 2, . . . }; if
instead N = {0, 1, 2, . . . } then 0 is hit by n = 0.
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1.3 Relations: Equivalence and Order
Relations generalize the idea of comparing or grouping elements. Equivalence relations produce
partitions used in quotient structures (appearing in linear algebra and geometry), while partial
orders model hierarchies like divisibility and set inclusion, relevant for convex cones and lattice
structures later.

Definition 1.9 (Binary relation). A relation R on a set X is a subset R ⊆ X ×X. We write
xR y when (x, y) ∈ R.

Definition 1.10 (Equivalence relation and classes). An equivalence relation is reflexive, sym-
metric, and transitive. For x ∈ X, the equivalence class is [x] = {y ∈ X : yRx}. The set of all
equivalence classes X/R = {[x] : x ∈ X} forms a partition of X.

Example 1.11 (Same parity on Z). Define mRn iff m − n is even. Then R is an equivalence
relation with two classes: the evens and the odds.

Definition 1.12 (Partial order). A partial order is reflexive, antisymmetric, and transitive. We
write (X,�). A total order also satisfies that for any x, y, either x � y or y � x.

Example 1.13 (Divisibility). On N, define a � b iff a divides b. This is a partial order (not total).
Minimal, maximal, least, and greatest elements differ in general.

1.4 Cardinality and Countability
Cardinality compares the “sizes” of infinite sets. Countability arguments recur when building
spaces (e.g., dense subsets of R or separability of function spaces) and when justifying construc-
tions such as enumerating rational approximations used in analysis and probability.

Definition 1.14 (Finite, countable, uncountable). A set is finite if bijective with {1, . . . , n}
for some n ∈ N. It is countably infinite if bijective with N, and countable if finite or countably
infinite. Otherwise it is uncountable.

Lemma 1.15 (Basic countability facts). If A and B are countable, then A×B is countable. A
countable union of countable sets is countable.

Proof. Sketch: Enumerate A = {a1, a2, . . . } and B = {b1, b2, . . . }. Pair indices via a diagonal
enumeration of N × N (e.g., by nondecreasing sums i + j). For a countable union

∪
k≥1Ak,

interleave the enumerations of Ak along diagonals.

Theorem 1.16 (Countability of Q). The set of rational numbers Q is countable.

Proof. Write each rational as p/q with p ∈ Z, q ∈ N, gcd(p, q) = 1. The set Z× N is countable
by Lemma 1.15. Map (p, q) to p/q; this is surjective onto Q, hence Q is a countable image of a
countable set and is therefore countable.

Theorem 1.17 (Cantor’s diagonal, statement). There is no bijection between N and (0, 1); in
particular, (0, 1) and R are uncountable [1].

Remark 1.18 (Decimal caveat). Real numbers may have two decimal expansions (e.g., 0.999 · · · =
1). Diagonal arguments avoid this by constructing a number differing in at least one digit from
every entry.

Theorem 1.19 (Cantor–Schröder–Bernstein, statement). If there exist injections f : A → B
and g : B → A, then there is a bijection h : A → B. [2, §3]
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1.5 Bounds, Supremum, and Infimum
Bounding is central to convergence, continuity, and optimization. The least upper bound
(completeness) axiom distinguishes R from Q and underlies later theorems in sequences/series,
integration (Monotone and Dominated Convergence), and optimization (existence of minima
on compact sets).

Definition 1.20 (Bounds). For S ⊆ R, an upper bound is u with s ≤ u for all s ∈ S; similarly
a lower bound. S is bounded above if it has an upper bound. The supremum supS is the least
upper bound; the infimum infS is the greatest lower bound.

Least upper bound property

Completeness of R: every nonempty set S ⊆ R that is bounded above has a supremum
in R (and dually for inf). This fails in Q. A classical reference is [3, Ch. 1].

Theorem 1.21 (Existence and basic properties of sup/inf). If S ⊆ R is nonempty and bounded
above, then supS exists and satisfies: (i) s ≤ supS for all s ∈ S; (ii) for all ε > 0 there exists
s ∈ S with supS − ε < s ≤ supS. Analogous statements hold for inf.

Proof. Existence is the least upper bound axiom. For (ii), if no s ∈ S satisfied supS − ε < s,
then supS − ε would be an upper bound smaller than supS, contradicting minimality.

Example 1.22 (Intuition via nested intervals). Let S = {x ∈ R : x2 < 2}. Then S is bounded
above (e.g., by 2). By Theorem 1.21, α = supS exists and equals

√
2. Indeed α2 ≤ 2 else

α would not bound S, and α2 6= 2 with α2 < 2 would contradict maximality by increasing α
slightly.
Remark 1.23 (Why Q is incomplete). Consider S = {x ∈ Q : x2 < 2}. It is bounded above in Q,
but has no rational least upper bound since

√
2 /∈ Q. This illustrates the necessity of working

in R for analysis.

1.6 Worked Examples
Examples ground the definitions and turn formulas into usable instincts. Read them as tem-
plates: extract the algebraic pattern you need (images/preimages; bijections; equivalence classes)
and reuse it in later contexts like measurable preimages and linear map images.
Example 1.24 (Images and preimages). Let f : R → R be f(x) = x2 and A = [−2, 1], B = (1, 3).
Then f(A) = [0, 4] while f−1(B) = (−

√
3,−1) ∪ (1,

√
3). Note f(A ∩ f−1(B)) = (1, 3) and

compare with Proposition 1.6.
Example 1.25 (Constructing bijections). There is a bijection N → Z: map 0 7→ 0 and 2k 7→ k,
2k + 1 7→ −(k + 1) for k ≥ 0. Hence Z is countable.
Example 1.26 (Equivalence classes). On X = R \ {0}, define x ∼ y iff x/y > 0. The classes are
the positive reals and the negative reals.

1.7 Checklist
By the end of this chapter you should be able to:

• Prove: set identities (e.g., De Morgan) and manipulate quantifiers correctly.

• Classify: whether a function is injective/surjective/bijective; compute images and preim-
ages.
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• Organize: sets via equivalence relations and partitions; recognize partial orders.

• Enumerate: classic sets and prove countability (e.g., Z, Q, N× N).

• Apply: the least upper bound property to identify sup/inf and prove their properties.

1.8 Exercises
Short problems to solidify concepts and build fluency.
Exercise 1.27. Set algebra warm-up. Prove (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).
Exercise 1.28. Preimage identities. Let f : X → Y and C,D ⊆ Y . Prove f−1(C \ D) =
f−1(C) \ f−1(D).
Exercise 1.29. Image of intersections. Give an example where f(A ∩ B) ⊊ f(A) ∩ f(B).
Then prove equality holds for all A,B iff f is injective.
Exercise 1.30. Equivalence and partition. Show that if {Ai}i∈I is a partition of X, the
relation x ∼ y iff x, y ∈ Ai for some i is an equivalence relation with classes Ai.
Exercise 1.31. Countable unions (hint). Let Ak = {(k, n) : n ∈ N}. Exhibit an explicit
bijection N →

∪
k≥1Ak by enumerating along diagonals of N× N.

Exercise 1.32. Countability of Q (variant). Construct an explicit enumeration of positive
rationals by the Calkin–Wilf tree or by arranging fractions with p + q increasing and skipping
nonreduced ones.
Exercise 1.33. Supremum property. Let S = { n

n+1 : n ∈ N}. Prove supS = 1 but 1 /∈ S.
Verify Theorem 1.21(ii).
Exercise 1.34. Why Q is incomplete. Let T = {x ∈ Q : x2 < 3}. Show T has no supremum
in Q.
Exercise 1.35. Optional, challenge. State and prove the pigeonhole principle using functions
and cardinality, and apply it to show that in any set of n + 1 integers, two have the same
remainder mod n.
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