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Preface

This book is about building. We focus on the engineering habits and minimal tooling that
let you move from a promising idea to a dependable system—one you can run, explain, and
improve. Each concept is grounded in code you can execute locally or in the cloud, favoring
clarity over ceremony with deterministic seeds, concise logs, and tiny tests.

Why These Topics Matter

We emphasise a handful of themes that show up in every system you ship.

Software engineering for AI — without disciplined packaging, CLIs, and tests, good ideas
remain one-offs. We establish habits that keep your work portable and reviewable.

The ML lifecycle — configuration, tracking, and simple pipelines turn experiments into
reproducible runs you can compare and ship.

AT engineering beyond models — real applications combine retrieval, generation, and orches-
tration. You will learn to ground outputs with your own data, chain tools and steps, and
balance latency, cost, and reliability.

Responsible AT — ethics, trust, and governance are integrated from the start with safety
checks and evaluation patterns.

How to Use This Book

You can read linearly or dip into the workflows you need today; every chapter is paired with
runnable code.

Every chapter links to a runnable notebook and small Python modules in the companion
repository. Start with the notebook to explore concepts, then adopt the scripts in your own
projects.

Use a local virtual environment or open the notebooks in Google Colab. Each example is
designed to run on a laptop with modest resources.

Treat outputs as contracts: we print verifiable, copy-pastable results so you can test quickly
and catch regressions.

Technical & Legal Note

This book and its code are provided for educational purposes only. Examples are simpli-
fied and may omit edge cases; verify results and assumptions for your context, especially
in safety-, medical-, or financial-critical settings. The author and publisher provide the
material “as is” without warranties and are not liable for losses arising from use; external
dependencies and links can change over time.
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