Al, ML & Software Engineering

Building Intelligent Systems in Practice

Dr. Yves J. HilpischE

February 3, 2026

=3
Ny

THE Al

ENGINEER

1Get in touch: https://linktr.ee/dyjh. Web page: https://theaiengineer.dev. Research, struc-
turing, drafting, and visualizations were assisted by GPT 5.x as a co-writing tool under human direction. Com-
ments and feedback are welcome.

https://linktr.ee/dyjh
https://theaiengineer.dev

Preface

This book is about building. We focus on the engineering habits and minimal tooling that
let you move from a promising idea to a dependable system—one you can run, explain, and
improve. Each concept is grounded in code you can execute locally or in the cloud, favoring
clarity over ceremony with deterministic seeds, concise logs, and tiny tests.

Why These Topics Matter

We emphasise a handful of themes that show up in every system you ship.

Software engineering for AI — without disciplined packaging, CLIs, and tests, good ideas
remain one-offs. We establish habits that keep your work portable and reviewable.

The ML lifecycle — configuration, tracking, and simple pipelines turn experiments into
reproducible runs you can compare and ship.

AT engineering beyond models — real applications combine retrieval, generation, and orches-
tration. You will learn to ground outputs with your own data, chain tools and steps, and
balance latency, cost, and reliability.

Responsible AT — ethics, trust, and governance are integrated from the start with safety
checks and evaluation patterns.

How to Use This Book

You can read linearly or dip into the workflows you need today; every chapter is paired with
runnable code.

Every chapter links to a runnable notebook and small Python modules in the companion
repository. Start with the notebook to explore concepts, then adopt the scripts in your own
projects.

Use a local virtual environment or open the notebooks in Google Colab. Each example is
designed to run on a laptop with modest resources.

Treat outputs as contracts: we print verifiable, copy-pastable results so you can test quickly
and catch regressions.

Technical & Legal Note

This book and its code are provided for educational purposes only. Examples are simpli-
fied and may omit edge cases; verify results and assumptions for your context, especially
in safety-, medical-, or financial-critical settings. The author and publisher provide the
material “as is” without warranties and are not liable for losses arising from use; external
dependencies and links can change over time.

Contents

Preface

Software & Systems Engineering Foundations

Engineering Mindsed

1.1 Why Engineering Patterns Matteﬂ
1.2 A Tiny Running Exampld
1.3 From Toy Script to System — A Roadmap|
1.4 Common Pitfalls|
1.5 Exercisesi ..
1.6 Where We're Heading Next
1.7 Further Sourcesl
|2 Software Engineering Essentials{
2.1 From Scripts to Packag‘e§
2.2 Core Function in a Packaq&
2.3 A Thin CLI Over the Packagel
0.4 Testing Basics — Confidence in MinutesJ
2.5 Common Pitfalls{
2.6 EXErcised oo
2.7 Where We're Heading Next
2.8 Further Sourcesl
|3 Infrastructure & Deplovmenﬂ
3.1 Containers in a Nutshel]l
3.2 Dockerizing the Chapter 2 APﬂ
3.3 Hardening: Non-root User Variantl
3.4 Local Orchestration with Docker Composel
3.5 Common Pitfalls{
3.6 Exercisesl ..
3.7 Where We’re Heading Next
3.8 Further Sources{
III Machine Learning Engineering in Practicé
4 The ML Lifecycld
1.1 From Notebook Cells to a Script‘
1.2 A Tiny Tracking Layer (No Heavy Framework)l
1.3 Compare Two Runs e
1.4 Common Pitfallé

ii

13
13
14
15
15
16
16
17
17

18

CONTENTS

1.5 Optional: Hydra Conﬁguration|
1.6 Optional: Log to MLﬂow|
1.7 Exercisesi ..
1.8 Where We're Heading Next
1.9 Further Sources{
b Feature Engineering & Pipelineﬁ
5.1 A Modular, Scripted Pipelinel
5.2 Orchestration Preview (Optional)
5.3 Common Pitfalls{
5.4 EXETCISES . o o o o o
5.5 Where We're Heading Next o
5.6 FUrther SOUTCeS o o o ot
b MLOps at Scale|
6.1 Drift Demo — Detect a Simple ShiftJ
6.2 Plan — What Happens When Drift Fires?‘
6.3 Exercisesl ..
6.4 Further Sources{
IIII Al Engineering Beyond Mode14
t? Al Engineering Foundationé
7.1 The Systems VieM
7.2 A Tiny Retrieval Demo (Local Onlv)l
7.3 Where Evaluation and Guardrails Fit‘
7.4 Common Pitfalls{
7.5 Exercised ..
7.6 Further Sources{
B Building with LLMs
8.1 Prompts as Contracts e e
8.2 Structured Extraction (Local Demo)l
8.3 A Tiny Oracle Set (Evaluation)|
8.4 Schema-First Validation (Optional)‘
8.5 Common Pitfalls{
8.0 Exercised ..
.7 Further Sources{
b Retrieval — Augmented Generatiod
0.1 From Strings to File§
0.2 Common Pitfalls|
0.3 Exercisesi ..
0.4 Further Source4
hO Al Agents & Orchestration|
10.1 Agents in One Paragraphl
10.2 A Tiny Tool-Using Agent (Local)|
10.3 Common Pitfalls{
10.4 Exercised ..

10.5 Further Sources{

iii

23
24
25
26
26

27
27
30
32
33
33
33

35
35
37
38
38

40

CONTENTS

|11 Scaling AI Svstemsl
124

11.1 Throughput vs. Latencvl

11.2 Batch Benchmark (CPU: GPU Optional)‘

11.3 Mixed Precision

and Tensor Coreé

11.4 Caching and KV

Caché

11.5 Runtime Choices

11.6 Common Pitfalls

11.7 Exercised L.
11.8 Further Sources{

IllEthics, Trust & Governancé

12.1 Risk-First Framing e

12.2 Measuring Fairness (Quick Pass)|

12.3 Safety and Red-Teaming (LLMs)l

12.4 Documentation and Governancel

12.5 Example — Quick Fairness Metrics (Toy Data)‘

12.6 Example — Tinvy Red-Team Harness (Local)

12.7 Example — Turn Metrics Into Tests (Thresholds)‘

12.8 Example — Read and Summarize the Reporﬂ

12.9 Exercisesl L.

12.10Further Sources (Original Papers & Standards)‘

|A Cheat Sheets{

A.1 What You Need

(Quick)|

A.2 Terminal Basics (First Steps)'

A .3 Virtual Environments (Isolate Your Work)‘

|A.3.1 Alternative: Conda Environments (If You Prefer Conda)|

A.4 Your First Script (and How to Run It) o oo oo

A.5 A Tiny Project Layout (Folders That Scale)‘

A.6 Testing (Confidence in Minutes). v oo oo,

A.7 Formatting and Linting (Clarity at Scale)|

A.8 Optional: Static

Types (Catch Mistakes Early)‘

A.9 Notebooks (Local and Colab) o oo oo v oo e

A.10 Git (Save, Comp

are, Share)|

A.11 Docker (Reproducible Runtime)|

A .12 Makefile (Convenient Shortcuts)‘

A.13 Next Steps (Practice Loop) o o v i i

A .14 Environment Variables (Configuration Without Code Changes)|

A .15 Troubleshooting

(QUICk FIXES) .« o o oo

A.16 Further Sources{

IB Engineering TOOH

iv

64
64
65
67
67
68
68
68
68

70
70
70
71
71
71
72
74
75
76
76

78
78
78
78

79
79
80
81
81
81
81
82
82
83

83
84

85

List of Figures

|1.1 Clarify which dimension can move for this release. 4
|2.1 Interfaces up top, domain in the middle, adapters at the edge.| 9
I3.1 Automate from commit to deploy; feed monitoring back into tests.| 16
|4.1 Make runs inspectable so you can review, rerun, and improve safely.| 22
b.l Each step produces artifacts and evidence that feed the next.‘ 30
b.l Feedback from monitoring informs the next training and release cycle.| 37
|7.1 Named stages make it easier to attach budgets, logs, and tests.‘ 43
B.l Treat prompt edits like code changes with measurable impact.‘ 51
b.l Each stage logs artifacts so you can inspect or re-run queries.‘ 57
|10.1 The loop stays observable when each arrow logs inputs and outputs.‘ 59
|11.1 Quantify savings before investing in new infrastructure.| 67

Contact

Al, ML & Software Engineering
The Al Engineer

Get in touch:
https://linktr.ee/dyjh

https://theaiengineer.dev

(© 2026 Dr. Yves J. Hilpisch — All rights reserved.

2
C"W

THE Al

ENGINEER

https://linktr.ee/dyjh
https://theaiengineer.dev

	Preface
	I Software & Systems Engineering Foundations
	Engineering Mindset
	Why Engineering Patterns Matter
	A Tiny Running Example
	From Toy Script to System — A Roadmap
	Common Pitfalls
	Exercises
	Where We’re Heading Next
	Further Sources

	Software Engineering Essentials
	From Scripts to Packages
	Core Function in a Package
	A Thin CLI Over the Package
	Testing Basics — Confidence in Minutes
	Common Pitfalls
	Exercises
	Where We’re Heading Next
	Further Sources

	Infrastructure & Deployment
	Containers in a Nutshell
	Dockerizing the Chapter 2 API
	Hardening: Non-root User Variant
	Local Orchestration with Docker Compose
	Common Pitfalls
	Exercises
	Where We’re Heading Next
	Further Sources

	II Machine Learning Engineering in Practice
	The ML Lifecycle
	From Notebook Cells to a Script
	A Tiny Tracking Layer (No Heavy Framework)
	Compare Two Runs
	Common Pitfalls
	Optional: Hydra Configuration
	Optional: Log to MLflow
	Exercises
	Where We’re Heading Next
	Further Sources

	Feature Engineering & Pipelines
	A Modular, Scripted Pipeline
	Orchestration Preview (Optional)
	Common Pitfalls
	Exercises
	Where We’re Heading Next
	Further Sources

	MLOps at Scale
	Drift Demo — Detect a Simple Shift
	Plan — What Happens When Drift Fires?
	Exercises
	Further Sources

	III AI Engineering Beyond Models
	AI Engineering Foundations
	The Systems View
	A Tiny Retrieval Demo (Local Only)
	Where Evaluation and Guardrails Fit
	Common Pitfalls
	Exercises
	Further Sources

	Building with LLMs
	Prompts as Contracts
	Structured Extraction (Local Demo)
	A Tiny Oracle Set (Evaluation)
	Schema-First Validation (Optional)
	Common Pitfalls
	Exercises
	Further Sources

	Retrieval — Augmented Generation
	From Strings to Files
	Common Pitfalls
	Exercises
	Further Sources

	AI Agents & Orchestration
	Agents in One Paragraph
	A Tiny Tool-Using Agent (Local)
	Common Pitfalls
	Exercises
	Further Sources

	Scaling AI Systems
	Throughput vs. Latency
	Batch Benchmark (CPU; GPU Optional)
	Mixed Precision and Tensor Cores
	Caching and KV Cache
	Runtime Choices
	Common Pitfalls
	Exercises
	Further Sources

	Ethics, Trust & Governance
	Risk-First Framing
	Measuring Fairness (Quick Pass)
	Safety and Red-Teaming (LLMs)
	Documentation and Governance
	Example — Quick Fairness Metrics (Toy Data)
	Example — Tiny Red-Team Harness (Local)
	Example — Turn Metrics Into Tests (Thresholds)
	Example — Read and Summarize the Report
	Exercises
	Further Sources (Original Papers & Standards)

	Cheat Sheets
	What You Need (Quick)
	Terminal Basics (First Steps)
	Virtual Environments (Isolate Your Work)
	Alternative: Conda Environments (If You Prefer Conda)

	Your First Script (and How to Run It)
	A Tiny Project Layout (Folders That Scale)
	Testing (Confidence in Minutes)
	Formatting and Linting (Clarity at Scale)
	Optional: Static Types (Catch Mistakes Early)
	Notebooks (Local and Colab)
	Git (Save, Compare, Share)
	Docker (Reproducible Runtime)
	Makefile (Convenient Shortcuts)
	Next Steps (Practice Loop)
	Environment Variables (Configuration Without Code Changes)
	Troubleshooting (Quick Fixes)
	Further Sources

	Engineering Tools

