Al Agents & Automation —
Engineering Intelligent Workflows

From LLMs to Reliable Agentic Systems

Dr. Yves J. HilpischE

February 2, 2026

o0———0

Vo

THE Al

ENGINEER

COJ}»

1Get in touch: linktr.ee/dyjh. Web page: theaiengineer.dev. Research, structuring, drafting, and visualiza-
tions were assisted by GPT 5.x as a co-writing tool under human direction. Comments and feedback are welcome.

https://linktr.ee/dyjh
https://theaiengineer.dev

Preface

This book is the capstone of a series that starts with Python and mathematics and culminates in
building systems that act. Models are components inside agentic workflows that observe, plan,
and use tools to achieve goals under constraints.

Who this is for: Engineers comfortable with Python and large language model (LLM) fun-
damentals who want to design and ship reliable agentic systems. If you have ever wired a small
script to an API and wondered how to turn it into a predictable service, this book is for you.

How we work: Small, testable examples; concise outputs; honest figures. Each chapter states
3-5 learning objectives, includes a deterministic demo, and ends with exercises and acceptance
criteria. The case studies in the later parts reuse the same harnesses you meet early on, so
improvements compound rather than fragment. See book_charter.md for the detailed rubric.

Why Agents, Why Now

Software automated repetitive tasks for decades. Machine learning raised the bar by learning
patterns from data. Large language models added a new twist: they can read, write, and reason
across many domains. Agents take the final step: they combine reasoning with action, grounded
in tools and memory, and aim for outcomes rather than mere predictions. This book is about
engineering those outcomes safely and repeatably, with the same humility and discipline you
would apply to any production system.

A Short History of Agents
It helps to know whose shoulders we stand on.

o Expert systems (1970s—1990s): rule bases and inference engines (forward or backward
chaining) codified expert knowledge. They worked well where rules were stable and exhaus-
tive, but struggled with uncertainty and scale.

» Reinforcement-learning agents (1990s—2010s): systems that learn by acting in an envi-
ronment, receiving rewards, and optimizing policies over time. They excelled in simulations
and games and gave us the vocabulary of state, action, reward, and policy.

o LLM-powered agents (2020s—): language models that plan and call tools. They bring
broad knowledge and flexible reasoning, but require engineering to avoid hallucinations, keep
costs in check, and act within guardrails.

You will see traces of all three in this book: rule-like guardrails, reinforcement-learning style
loops and budgets, and LLMs as planners. The goal is not to win a taxonomy debate, but to
give you a shared mental model you can use with colleagues in infrastructure, product, and
research.

ii

How to Use This Book

Each chapter starts with a lead paragraph and a trio of callouts titled “You’ll Need”, “At a
Glance”, and “You’ll Learn”. Prose anchors concepts; tiny runnable scripts in the companion
repository make them real;

github.com /yhilpisch /agecode

exercises cement understanding. The Sanity Box in each chapter lists quick checks so you know
you are on track. You can read linearly, but it is common to jump between code and text: run
a snippet, then return to the page that explains why it behaves that way.

What’s Inside

. (Ch. 1-3): mental model, anatomy, and engineering mindset for agents.

e Part II: building blocks—language models as brains, memory, tools, and multi-agent work-
flows.

. Eart I1I: frameworks and deployments, from local harnesses to cloud services.
. : applications in finance, knowledge work, and industry settings.

. : safety, governance, and the road ahead, including scenario planning and signals to
watch.

Turn the page when you can explain the loop in Eihaéter 1 out loud. That sentence becomes
your compass for the rest of the book; later parts simply refine how you observe, plan, act, and
learn under tighter budgets and in richer environments.

https://github.com/yhilpisch/agecode

Contents

Preface

II Foundations of Al AgentsJ

|1 The Evolution Towards Agents‘

1.1 Why It Mattersl
1.2 Key Ideas| ..
1.3 Visual Overviewl
1.4 Worked Example—Simple Calculator Agentl
1.5 From Code — Concept§
1.6 FExercises (with Acceptance Criteria)‘
1.7 Further Readine]
1.8 Where We Are Heading Nextl

I‘Z The Anatomy of an Al Agent‘

2.1 Why Components Matteﬂ
2.2 Policy: Brains with a Checklist‘
0.3 Tools: Hands with Safety Gloves
2.4 Memory: The Agent’s NotebooH
2.5 Environment: Where Work Landsi
2.6 Putting the Loop Togethey o
2.7 Exercises (Acceptance Criteria)‘

|3 The Engineering Mindset for Agenté

3.1 Observability: Seeing the Loop Clearlv{
3.2 Budgets: Envelopes for Time, Cost, and Riskl
3.3 Guardrails: Safety by Defaulﬂ
3.4 From Demo to Serviceo
3.5 Exercises (Acceptance Criteria)‘

[T Building Blocks of Agentic Systems

Iél_Language Models as Agent Brains
1.1 Why LLMs Make Good Planners (and When They Don’t)|
1.2 Prompt Patterns That Produce Actior@
4.3 Minimal Planner Stub (No API Required)
1.4 Exercises (with Acceptance Criteria) oovviu v

iii

10
11
11
12
12
12
13

14
14
15
15
15
16

17

CONTENTS

b Memory and Staté

5.1 Why Memory? . o o o oo e e e
5.2 A Tiny Memory Store (Local Onlv)|
H.3 _Integrating Memory into the Loop|
5.4 Exercises (Acceptance Criteria)|
5.5 Further Readingi

b Tools and APIQ
6.1 A Minimal Tool Adapter (Local Onlv)|
6.2 Putting It Together: Adapter in the Looﬂ
6.3 Sandboxing Side-Effecting TOOIS‘
6.4 Exercises (Acceptance Criteria) oo v oo i
6.5 Further Reading o o o vv oot
6.6 Where We Are Heading Nexd

IIII Orchestration and Collaboration

I? Workflows and Orchestratio%
7.1 Why Workflows for Agents?
7.2 A Tiny Workflow Engine (Local Only)
7.3 Putting It Together: A Small ETL Flow o o o oo
7.4 Exercises (Acceptance Criteria) vovvv v v v

|8 Multi-Agent Collaborationl

8.1 Why Teams of Agents?|
8.2 A Minimal Chat Between Planner and Critid
8.3 Putting It Together: A Small Specialist Team]
8.4 Exercises (Acceptance Criteria)ovvv v v
8.5 Further Reading{
8.6 Where We Are Heading Nexd

IIV Frameworks and Platforms{

|9 Agent Framework§
0.1 What Carries Over Between Frameworks|
0.2 A Minimal Framework Adapter (Local Onlv)‘
0.3 Side-by-Side: Plain vs. Framework Runnexl
0.4 When to Use a Frameworko oo v
0.5 Exercises (Acceptance Criteria)‘
0.6 Further Readingj

I&Aéents in the Cloud and on the Edge
10.1 Cloud-Style Request Handler (Local Stub)

10.2 Tiny Edge Loop (Local Only) o oo v v i
10.3 Sandboxing State and File§
10.4 Statelessness and Idempotency at the Edge{
10.5 Exercises (Acceptance Criteria)|
10.6 Further Readinej
10.7 Where We Are Heading Nextl

iv

23
23
24
25
26
27

28
29
30
31
32
32
32

33

35
35
36
37
37

39
39
40
41
41
42
42

43

CONTENTS

|V Applications of Al Agents{

IliAéents in Financel
11.1 A Minimal Research — Signal — Report Pipeline
11.2 Designing the Pipelinel
11.3 Data and Assumptioné
11.4 Designing Signals That Age Welj
11.5 Risk, Compliance, and Scope‘
11.6 Observability and Audiﬂ
11.7 Failure Modes and Fallbacksl
11.8 From Tovto Real Data
11.9 Exercises (Acceptance Criteria)‘

IllAJents in Knowledge Workl

12.1 Extracting Fields from Text‘
12.2 Building a One-Line Summaryl
12.3 Document Types an Scopd
12.4 Extraction Strategies e e e
12.5 Quality Checks and Fidelityl o oo
12.6 Scaling Up Thoughtfullvl
12.7 Exercises (Acceptance Criteria)l

IliAJents in Industryl
13.1 A Tiny Queue Runner with Metrics{
13.2 Queue Design and Statuses|
13.3 SLA Budgets and Backpressurel
13.4 Retries, Idempotency, and Fallbacks{
13.5 Metrics and Alert§
13.6 Human in the Loop‘
13.7 Exercises (Acceptance Criteria)‘

|VI Case Studies: End-to-End Systems‘

|14 Case Study — Research & Reporting Assistant (RAG + Planning)‘

14.1 Problem Framing and Acceptancd
14.2 Local Retrieval Stub (Dependency—Free)|
14.3 Planning and Drafting]
14.4 Fact-Checking Pass (Minimal)|
14.5 Observability and Audiﬂ
14.6 Swapping in a Framework (Optional)‘
14.7 Exercises (Acceptance Criteria) oo v oo i

|15 Case Study — Financial Signals & Compliancé

15.1 Shape of the Pipeline|
15.2 Local Pipeline (Dependency—Free)‘
15.3 Audits and Reports o oo vt
15.4 Scaling SafeM
15.5 Exercises (Acceptance Criteria)‘

53

55
56
56
56
o7
57
o7
57
o8
58

59
59
60
61
61
61
62
62

63
63
64
64
65
65
65
65

67

70
70
71
72
72
72
72

CONTENTS

|16 Case Study — Ops Ticket Triage & Automatiod

|VII Frontiers and Challenge#

|17 Safety, Alignment, and GovernanceJ

IliThe Future of Agenté

k;lossary of Agent Terms‘

|Agent Engineering Cheat Sheed

IFramework Comparison Tables

btarter Templates

16.1 Shape of the LoOP . . o o oo v v
16.2 Tiny Multi-Role Triage (Local)|
16.3 Logs and Metricso o oi i
16.4 Optional: Service Wrapped
16.5 Exercises (Acceptance Criteria)

17.1 Threat Modeling for Agents oo v it
17.2 A Minimal Policy Guard (Local Only)‘
17.3 Red-Team and Canary Harness
17.4 Governance: Policy, Provenance, and Revieﬂ
17.5 Privacy and Responsible Datal o oovv i
17.6 Exercises (Acceptance Criteria)‘

18.1 Durable Patterns and Likely Traiectoriesl
18.2 A Tiny Scenario Playbook (Local Olly)l
18.3 Tracking Experiments and Decisiony
18.4 Signals to Watch . . o o o oo
18.5 Exercises (Acceptance Criteria)‘

vi

77
7
78
79
79
79

80

82
82
83
84
84
84
84

86
86
87
87
88
88

89
91
94
96

97

List of Figures

|1.1 Keeping each phase within its latency budget forces instrumentation and logging
before adding more tools or autonomy.)

|2.1 Chapter 2 insists every component connection is explicit so you can trace where
ﬁnformation is created, transformed, or persisted.\ 10

I3.1 Chapter 3 insists every incident loops through shared telemetry, codified budgets,‘
land human playbooks before agents regain autonomy.‘ 16

|4.1 Token budgets (gray line) create a ceiling the planner must respect, forcing con—l

bise FCASOMING., v v o it e e e e 22

b.l Chapter 5 insists on explicit read/write paths so planners know exactly which
|facts they can trust.| 25

b.l High-capability, high-risk tools (top-right) demand sandboxing, human review,‘
br throttles before production.| 31

|7.1 States cascade left to right; downstream nodes wait until upstream work is ﬁnished.‘ 37

B.l Alternating turns keep ownership clear: planners propose, critics approve or re—l
huest revisionsl 41

b.l Adapters pass the same events forward so observability stays intact after migration.‘ 48

|10.1 Cloud handlers tolerate higher latency but more resources; edge loops demand

Etrict budgets). 52

Ill.l Each boundary enforces schema validation before artifacts move downstream. . . 55
|12.1 Balanced extraction prevents blind spots before summarizationj 61
|13.1 Points above the gray SLA line trigger escalations or more capacityl 65

vii

Contact

Al Agents & Automation — Engineering Intelligent Workflows
The Al Engineer

Get in touch:
https://linktr.ee/dyjh

https://theaiengineer.dev

(© 2026 Dr. Yves J. Hilpisch — All rights reserved.

20
C’Y’

THE Al

ENGINEER

https://linktr.ee/dyjh
https://theaiengineer.dev

	Preface
	I Foundations of AI Agents
	The Evolution Towards Agents
	Why It Matters
	Key Ideas
	Visual Overview
	Worked Example—Simple Calculator Agent
	From Code → Concepts
	Exercises (with Acceptance Criteria)
	Further Reading
	Where We Are Heading Next

	The Anatomy of an AI Agent
	Why Components Matter
	Policy: Brains with a Checklist
	Tools: Hands with Safety Gloves
	Memory: The Agent’s Notebook
	Environment: Where Work Lands
	Putting the Loop Together
	Exercises (Acceptance Criteria)

	The Engineering Mindset for Agents
	Observability: Seeing the Loop Clearly
	Budgets: Envelopes for Time, Cost, and Risk
	Guardrails: Safety by Default
	From Demo to Service
	Exercises (Acceptance Criteria)

	II Building Blocks of Agentic Systems
	Language Models as Agent Brains
	Why LLMs Make Good Planners (and When They Don’t)
	Prompt Patterns That Produce Actions
	Minimal Planner Stub (No API Required)
	Exercises (with Acceptance Criteria)

	Memory and State
	Why Memory?
	A Tiny Memory Store (Local Only)
	Integrating Memory into the Loop
	Exercises (Acceptance Criteria)
	Further Reading

	Tools and APIs
	A Minimal Tool Adapter (Local Only)
	Putting It Together: Adapter in the Loop
	Sandboxing Side-Effecting Tools
	Exercises (Acceptance Criteria)
	Further Reading
	Where We Are Heading Next

	III Orchestration and Collaboration
	Workflows and Orchestration
	Why Workflows for Agents?
	A Tiny Workflow Engine (Local Only)
	Putting It Together: A Small ETL Flow
	Exercises (Acceptance Criteria)

	Multi-Agent Collaboration
	Why Teams of Agents?
	A Minimal Chat Between Planner and Critic
	Putting It Together: A Small Specialist Team
	Exercises (Acceptance Criteria)
	Further Reading
	Where We Are Heading Next

	IV Frameworks and Platforms
	Agent Frameworks
	What Carries Over Between Frameworks
	A Minimal Framework Adapter (Local Only)
	Side-by-Side: Plain vs. Framework Runner
	When to Use a Framework
	Exercises (Acceptance Criteria)
	Further Reading

	Agents in the Cloud and on the Edge
	Cloud-Style Request Handler (Local Stub)
	Tiny Edge Loop (Local Only)
	Sandboxing State and Files
	Statelessness and Idempotency at the Edge
	Exercises (Acceptance Criteria)
	Further Reading
	Where We Are Heading Next

	V Applications of AI Agents
	Agents in Finance
	A Minimal Research → Signal → Report Pipeline
	Designing the Pipeline
	Data and Assumptions
	Designing Signals That Age Well
	Risk, Compliance, and Scope
	Observability and Audit
	Failure Modes and Fallbacks
	From Toy to Real Data
	Exercises (Acceptance Criteria)

	Agents in Knowledge Work
	Extracting Fields from Text
	Building a One-Line Summary
	Document Types and Scope
	Extraction Strategies
	Quality Checks and Fidelity
	Scaling Up Thoughtfully
	Exercises (Acceptance Criteria)

	Agents in Industry
	A Tiny Queue Runner with Metrics
	Queue Design and Statuses
	SLA Budgets and Backpressure
	Retries, Idempotency, and Fallbacks
	Metrics and Alerts
	Human in the Loop
	Exercises (Acceptance Criteria)

	VI Case Studies: End-to-End Systems
	Case Study — Research & Reporting Assistant (RAG + Planning)
	Problem Framing and Acceptance
	Local Retrieval Stub (Dependency-Free)
	Planning and Drafting
	Fact-Checking Pass (Minimal)
	Observability and Audit
	Swapping in a Framework (Optional)
	Exercises (Acceptance Criteria)

	Case Study — Financial Signals & Compliance
	Shape of the Pipeline
	Local Pipeline (Dependency-Free)
	Audits and Reports
	Scaling Safely
	Exercises (Acceptance Criteria)

	Case Study — Ops Ticket Triage & Automation
	Shape of the Loop
	Tiny Multi-Role Triage (Local)
	Logs and Metrics
	Optional: Service Wrapper
	Exercises (Acceptance Criteria)

	VII Frontiers and Challenges
	Safety, Alignment, and Governance
	Threat Modeling for Agents
	A Minimal Policy Guard (Local Only)
	Red-Team and Canary Harness
	Governance: Policy, Provenance, and Review
	Privacy and Responsible Data
	Exercises (Acceptance Criteria)

	The Future of Agents
	Durable Patterns and Likely Trajectories
	A Tiny Scenario Playbook (Local Only)
	Tracking Experiments and Decisions
	Signals to Watch
	Exercises (Acceptance Criteria)

	Epilogue
	Glossary of Agent Terms
	Agent Engineering Cheat Sheet
	Framework Comparison Tables
	Starter Templates

