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Preface

This book is the capstone of a series that starts with Python and mathematics and culminates in
building systems that act. Models are components inside agentic workflows that observe, plan,
and use tools to achieve goals under constraints.

Who this is for: Engineers comfortable with Python and large language model (LLM) fun-
damentals who want to design and ship reliable agentic systems. If you have ever wired a small
script to an API and wondered how to turn it into a predictable service, this book is for you.

How we work: Small, testable examples; concise outputs; honest figures. Each chapter states
3-5 learning objectives, includes a deterministic demo, and ends with exercises and acceptance
criteria. The case studies in the later parts reuse the same harnesses you meet early on, so
improvements compound rather than fragment. See book_charter.md for the detailed rubric.

Why Agents, Why Now

Software automated repetitive tasks for decades. Machine learning raised the bar by learning
patterns from data. Large language models added a new twist: they can read, write, and reason
across many domains. Agents take the final step: they combine reasoning with action, grounded
in tools and memory, and aim for outcomes rather than mere predictions. This book is about
engineering those outcomes safely and repeatably, with the same humility and discipline you
would apply to any production system.

A Short History of Agents
It helps to know whose shoulders we stand on.

o Expert systems (1970s—1990s): rule bases and inference engines (forward or backward
chaining) codified expert knowledge. They worked well where rules were stable and exhaus-
tive, but struggled with uncertainty and scale.

» Reinforcement-learning agents (1990s—2010s): systems that learn by acting in an envi-
ronment, receiving rewards, and optimizing policies over time. They excelled in simulations
and games and gave us the vocabulary of state, action, reward, and policy.

o LLM-powered agents (2020s—): language models that plan and call tools. They bring
broad knowledge and flexible reasoning, but require engineering to avoid hallucinations, keep
costs in check, and act within guardrails.

You will see traces of all three in this book: rule-like guardrails, reinforcement-learning style
loops and budgets, and LLMs as planners. The goal is not to win a taxonomy debate, but to
give you a shared mental model you can use with colleagues in infrastructure, product, and
research.
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How to Use This Book

Each chapter starts with a lead paragraph and a trio of callouts titled “You’ll Need”, “At a
Glance”, and “You’ll Learn”. Prose anchors concepts; tiny runnable scripts in the companion
repository make them real;

github.com /yhilpisch /agecode

exercises cement understanding. The Sanity Box in each chapter lists quick checks so you know
you are on track. You can read linearly, but it is common to jump between code and text: run
a snippet, then return to the page that explains why it behaves that way.

What’s Inside

. (Ch. 1-3): mental model, anatomy, and engineering mindset for agents.

e Part II: building blocks—language models as brains, memory, tools, and multi-agent work-
flows.

. Eart I1I: frameworks and deployments, from local harnesses to cloud services.
. : applications in finance, knowledge work, and industry settings.

. : safety, governance, and the road ahead, including scenario planning and signals to
watch.

Turn the page when you can explain the loop in Eihaéter 1 out loud. That sentence becomes
your compass for the rest of the book; later parts simply refine how you observe, plan, act, and
learn under tighter budgets and in richer environments.


https://github.com/yhilpisch/agecode
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